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Abstract

‘We propose optimization as a general paradigm for formalizing welfare-
based fairness in Al systems. We argue that optimization models allow
formulation of a wide range of fairness criteria as social welfare functions,
while enabling Al to take advantage of highly advanced solution technol-
ogy. In particular, we highlight that social welfare optimization supports
a broad perspective on fairness motivated by general distributive justice
considerations. We illustrate this advantage by reviewing a collection of
social welfare functions that capture various concepts of equity. Most
of these functions have tractable optimization formulations that can be
efficiently solved by state-of-the-art methods. To further demonstrate
the potentials of social welfare optimization in Al, we show how to inte-
grate optimization with rule-based AI and machine learning, and outline
research directions to explore for practical implementation of integrated
methods.

1 Introduction

Artificial intelligence is increasingly used not only to solve problems, but to
recommend action decisions that range from awarding mortgage loans to grant-
ing parole. The prospect of making decisions immediately raises the question
of ethics and fairness. If ethical norms are to be incorporated into artificial
decision making, these norms must somehow be automated or formalized. The
leading approaches to this challenge include

e value alignment, which strives to train or modify Al systems to reflect
human ethical values automatically, e.g. [Allen et all [2005], Russell [2019],
[2024);

e logical formulations of ethical and fairness principles that attempt to
represent them precisely enough to govern a rule-based Al system, e.g.

Bringsjord et all [2006], Lindner et al! [2020], Hooker and Kiml [2018]; and



http://arxiv.org/abs/2102.00311v3

e statistical fairness metrics that aim to ensure that benefits are allocated
equitably in the decision process, e.g. [Dwork et all [2012], Mehrabi et al.
[2019], IChouldechova and Rothl [2020].

Each of these approaches can be useful in a suitable context. We wish to propose,
however, an alternate framework for formalizing ethics and fairness that has
received less attention:

e optimization, which allows one to achieve equity or fairness by maximizing
a social welfare function.

Welfare economics has long used social welfare functions (SWFs) as a tool to
measure the desirability of a given distribution of benefits and harms. A SWF is
a function of the utility levels allocated to affected parties, where utility reflects
a party’s gain or loss as a consequence of the decisions of interest. Using a
SWF motivates explicit consideration of the downstream outcomes of fairness
and equity criteria. In contrast to leading notions of Al fairness that focus on
eliminating disparity between groups, SWF's allow a broader perspective that
emphasizes fairness in the welfare impacts of decisions.

AT research is beginning to recognize the importance of a welfare perspective
on fairness (e.g., |Corbett-Davies and Goel [2018], [Hu and Chen [2020]), due
in part to its potential for aligning fairness concepts with social well-being.
Despite this rising attention, there is no general framework for incorporating
welfare-based fairness into Al systems. In this paper, we utilize social welfare
optimization as the core component of one possible framework. This framework
allows one to take advantage of the flexibility of SWF's to represent a wide range
of fairness and equity concepts, as well as to harness powerful optimization
solvers. Optimization methods are of course already employed in Al to train
neural networks, calibrate machine learning models, and the like. Our proposal
is to bring fairness under the optimization umbrella.

We begin below by stating some specific advantages of social welfare opti-
mization as a paradigm for implementing equity and fairness in AI. We then
state the general optimization problem and its potential for solution by advanced
mathematical programming software. Following this, we introduce as a run-
ning example the mortgage loan processing problem that is often discussed in
an Al fairness context, and we review some previous work on social welfare
optimization in both the operations research and Al communities. We then
examine several SWFs to illustrate how they can capture a variety of fairness
concepts. We indicate how they correspond to mathematical programming
models and assess their suitability for the mortgage problem in particular.
We conclude by outlining a general framework and research program for social
welfare optimization as a basis for formalizing fairness in Al

2 Advantages of Optimization

The optimization of social welfare functions offers several advantages as a frame-
work for incorporating fairness into Al



e Social welfare functions provide a broader perspective on fairness than can
be achieved by focusing exclusively on bias and concepts of parity across
groups. They not only have the flexibility to represent a wide range of
fairness concepts, but they encourage modelers to take into account the
overall welfare of those affected. While Al-based decision making already
strives to maximize predictive accuracy, a welfare perspective allows it to
consider explicitly the more general benefits that accurate predictions can
deliver, as well as whether the benefits are distributed justly.

e Social welfare functions allow one to balance equity and efficiency in a
principled way. Where equity is an issue, there is often a desire for
efficiency as well. A social welfare approach obliges one to consider how
equity and utilitarian goals should be represented and balanced when
one chooses the function to be maximized. One can of course maximize
efficiency subject to a constraint on some measure of inequity, but this
provides no principled way of regulating the trade-off between the two.

e Optimization models allow one to harness powerful optimization methods,
which have been developed and refined over a period of 80 years or more.
A wide variety of social welfare functions can be formulated for solution by
highly advanced linear, nonlinear, and mixed integer programming solvers.
We provide examples in Section

e Optimization models offer enormous flexibility to include constraints on
the problem. Decisions are normally made in the context of resource
constraints or other limitations on possible options. These can be rep-
resented as constraints in the optimization problem, as nearly all state-of-
the-art optimization methods are designed for constrained optimization.
Also, a complex social welfare function can often be simplified by adding
constraints to the optimization problem, resulting in a problem that is
easier to solve.

3 The Basic Optimization Problem

The general problem of maximizing social welfare can be stated
mmax{W(U(:B)) |z € S.} (1)

where & = (21,...,xz,) is a vector of resources distributed across stakeholders
1,...,n, and S; is the set of feasible values of & permitted by resource limits
and other constraints. U = (Uy,...,U,) is a vector of wtility functions, where
U;(x) defines the utility experienced by stakeholder ¢ as a result of the resource
distribution @. We can normally write U;(x) as U;(x;), since a stakeholder’s
utility typically depends only on the resources allotted to that stakeholder.
Finally, W (u) is a social welfare function that measures the desirability of a
vector u of utilities. Problem ({l) maximizes social welfare over all feasible
resource allocations.



In practice, it is often convenient to model the utility functions U using
constraints, because this results in problems better suited for optimization
solvers. One therefore writes () as

Igix{W’(u) | (z,u) € Spu} (2)

where u is a vector of utilities, and Sg,, is defined so that (x,u) € Sz, implies
x € Sy and u = U(x). The function W’ is a possibly simplified version of W
that yields an equivalent optimization problem due to constraints defining Sg., .

To simplify exposition, we assume that the original problem constraints that
define S, consist of (or can be approximated by) a system of linear inequalities
and equations. Thus, for example, when we say that () is a linear programming
(LP) problem for a given W, we mean that (IJ) can be formulated as an LP prob-
lem (2) when S, is defined by a linear system. The linearity assumption actually
allows a great deal of modeling flexibility, because Sg,, can be approximated by
linear constraints whenever S, is convex and U(x) is a concave function of
x. The latter occurs in the common situation where U is linear or represents
decreasing returns to scale.

All of the SWFs considered here can be formulated as linear, nonlinear, or
mixed integer programming problems for which advanced solution technology
exists. An LP model optimizes a linear function over continuous variables,
subject to linear inequality constraints. The problem is extremely well solved.
Nonlinear programming (NLP) models optimize a nonlinear function over con-
tinuous variables, subject to linear or nonlinear inequality constraints. All the
NLP models considered here are relatively easy to solve. Mixed integer/linear
programming (MILP) models are LP problems except that some variables must
take integer values. They are combinatorial in nature, but state-of-the-art soft-
ware frequently solves industrial instances with thousands of discrete variables.

If some of the original problem variables z; are discrete, an otherwise LP
problem becomes an MILP problem, and an NLP problem becomes a mixed
integer /nonlinear programming (MINLP) problem. The latter can be quite
hard to solve. An MILP problem of course remains an MILP problem.

4 Example: Mortgage Loans

We use mortgage loan processing as a running example, as it is a much-discussed
application of Al-based decision making. Issues of fairness arise when an Al
system is more likely to deny loans to members of certain groups, perhaps
reflecting minority status or gender. A frequently used remedy is to apply
statistical bias metrics to detect the problem and adjust the decision algorithms
in an attempt to solve it.

Yet bias is only one element of a broader decision-making context. For
one thing, there is a clear utilitarian imperative. The reason for automating
mortgage decisions in the first place is to predict more accurately who will
default, because defaults are costly for the bank and devastating to home



buyers. The desire for accurate prediction is, at root, a desire to maximize
utility. Furthermore, bias is regarded as unfair in large part because it reduces
the welfare of a segment of society that is already disadvantaged. An aversion to
bias is, to a great degree, grounded in a desire for distributive justice in general.
All this suggests that loan decisions should be designed to achieve what we
really want: efficiency and distributive justice, rather than focusing exclusively
on predictive accuracy and group parity.

The social welfare function W in () should be selected to balance efficiency
and equity in a suitable fashion; we consider some candidate SWFs in Section Gl
The stakeholders 1, . .., n might include the loan applicants, the bank, the bank’s
stockholders, and the community at large. The utility function U converts a
given set of loan decisions = (z1,...,x,) to a vector of expected utilities u =
(u1,...,un) = U(x) that the stakeholders experience as a result. Since granting
a loan is a yes-or-no decision, we can define z; to be a binary variable with x; = 1
if applicant i receives a loan (we fix x; = 0 if 7 is a stakeholder other than an
applicant). The utility measure u; = U;(z;) for applicant ¢ could depend on the
applicant’s financial situation as well as the amount of the loan, as for example
when the marginal value of a loan dollar is greater for an applicant who is less
well-off. The SWF can reflect a preference for granting loans to disadvantaged
applicants even when they have a somewhat higher probability of default, so
as to ensure a more just distribution of utility. This could have the effect of
avoiding bias against minority groups, but as part of a more comprehensive
assessment of social welfare.

This framework can be applied to an Al-based decision-making context in
several ways. Machine learning can estimate the probability p; of default for a
given applicant ¢, based on available data, and that estimate would feed into the
expected utility u; that results from granting the loan. In particular, we would
have 4; = piul + (1 — p;)ul, where u} is the utility that results if i repays the
loan and u{ if i defaults. If v; is applicant i’s utility without a loan, we have
Ui(x;) = 0; + (@; — 9;)x;. When confronted with a batch of loan decisions, the
bank could maximize W (U (x)) subject to a constraint ), ¢;z; < B on the funds
available (where ¢; is the requested loan amount) and perhaps other constraints.
Another option is for the bank to solve the optimization problem in advance,
before particular applicants are considered. It would maximize W (U (x)) over
a set of hypothetical applicants i corresponding to various financial profiles,
again using ML-based default probabilities as input. In this case, the utility
U;(x;) that accrues to a potential applicant type would depend in part on the
estimated number of applicants in the population that have the corresponding
profile. Then when someone with financial profile ¢ applies for a loan, the
bank would award the loan if z; = 1 in the optimal solution of the welfare
maximization problem. We will later refer to these two options as examples of
post-processing integration of machine learning and social welfare optimization,
because the fairness element is injected after the learning phase.

In-processing integration can be achieved by incorporating social welfare
into the actual training of the machine learning system, which the bank could
use to predict whether a loan application should be approved. The training



algorithm would maximize a SWF rather than predictive accuracy—with the
understanding that predictive accuracy is a major determinant of social welfare.
Using this approach, the output of the ML system for a particular applicant
would already reflect general welfare and fairness concerns.

5 Previous Work

Social welfare optimization is already fairly well established in the operations
research literature, and it is beginning to attract interest in the AI community.
Our proposal is that Al expand these initial efforts into a general research
program for formulating fairness. We review here some of the previous work in
both literatures.

An excellent survey of equity models used in operations research is pro-
vided by [Karsu and Morton [2015]. We mention a few examples that combine
equity and efficiency. Bandwidth allocation in telecommunication networks is
a popular application studied in early works on fair resource allocation (Luss
[1999], [Ogryczak and Sliwiniski [2002], Ogryczak et all [2008]). For problems in
this domain, a standard setup is to interpret bandwidth as utility and define
a SWF that is consistent with a Rawlsian maximin criterion. The correspond-
ing optimization problem seeks equitable allocations that optimize the worst
performance among activities or services that compete for bandwidth. Project
assignment is another application where fairness is often relevant, as the in-
volved stakeholders may have different preferences over projects. For instance,
Chiarandini et all [2019] work with a real-life decision to assign projects to
university students. They use student rankings of projects as utilities and study
a variety of SWFs that capture different fairness-efficiency balancing princi-
ples. Fair optimization has also received attention in humanitarian operations.
Eisenhandler and Tzun [2019] study an important logistical challenge in food
bank operations, food pickup and distribution. They design a routing resource
allocation model to seek both fair allocation of food to different agencies and effi-
cient delivery of as much food as possible. The utilities of agencies are measured
by the amount of food delivered. An SWF is selected to combine utility and
the Gini coefficient. Mostajabdaveh et all [2019] consider a disaster preparation
task of selecting shelter locations and assigning neighborhoods to shelters. They
choose a SWF that combines the Gini coeflicient with neighborhood utilities
based on the travel distances to their assigned shelter.

Recent Al research has developed efficient algorithms that take fairness into
account. This effort is not directly comparable to our proposal in that it develops
algorithms to solve specific problems that have a fairness component, rather
than formulating optimization models that can be submitted to state-of-the-art
software. Algorithmic design tasks are often associated with fair matching deci-
sions, such as kidney exchange McElfresh and Dickerson [2018], paper-reviewer
assignment in peer review [Stelmakh et all [2019], or online decision procedures
for a complex situation such as ridesharing [Nanda et all |2020].

Fair machine learning is a rapidly growing field in recent years. Fair ML



methods in literature can be categorized as pre-, in-, or post-processing, which
respectively seek fairness by modifying standard ML methods before, during, or
after the training phase. The majority of fair ML methods seek to eliminate bias
and discrimination in standard ML models, via fairness notions that measure
certain type of disparity in the generated predictions. Many of these methods
rely on optimization in the fairness-seeking components. Pre-processing meth-
ods can use optimization models to find the best data modifications to the train-
ing data to prevent bias and disparity (see e.g. [Zemel et all [2013],|Calmon et al
[2017]). Similarly, post-processing methods can use optimization models to
determine the optimal tuning rules to adjust the predictions generated from
the trained model to seek fairness (see e.g. [Hardt et al! [2016], |Alabdulmohsin
[2020]). Moreover, fairness through optimization fits naturally into in-processing
methods, which modify standard ML models by adding fairness constraints or
including fairness components in objective function (see e.g. [Zafar et al) [2019],
Olfat and Aswani [2018], [Donini et all [2018§].

Different from this dominant statistical view of fairness, an emerging research
thread advocates welfare-based fairness in ML to seek better compatibility
between fair ML and distributive justice. This is in line with our proposal
of using social welfare functions to capture a broader perspective on fairness.
We next discuss a few representative papers in this thread, and review their
chosen utility and social welfare definitions. [Heidari et all [2018] consider a
standard supervised learning setting with true labels {y;} and predicted labels
{g:}. They define the utility function as a function of y;, §;, and the specific
format is chosen to reflect whether ¢ is risk averse, neutral or seeking, and how
close the predicted outcome g; is to ¢’s desirable outcome. They then define
a utilitarian sum of these individual utilities as the social welfare measure,
and propose to add a constraint on this social welfare value to standard ML
models as an in-processing fair ML approach. |[Hu and Chen [2020] study a
similar utility definition without the risk component in a classification setup.
They evaluate the overall welfare associated with classification decisions through
comparing a vector of welfare values, which measure the utilitarian welfare by
group. Also in a classification setting, |Corbett-Davies and Goel [2018] suppose
each group has fixed benefits and costs associated with classification outcomes,
and these values are used as parameters in the utility functions. A group’s utility
aggregates the benefits and costs that individuals of the group incur from their
classification outcomes. A more refined view of utility is studied in|Heidari et al.
[2019]: they partition one’s actual utility into an effort-based component and
an advantage component. Utilizing this partition, they group individuals by
effort-based utilities and propose a fairness measure equivalent to the expected
advantage utility of the worst-off group.

6 A Sampling of Social Welfare Functions

We briefly review a collection of SWFs to illustrate how they can embody various
conceptions of equity. For each, we indicate the type of optimization model



it yields, and whether it is appropriate for our running example of mortgage
loan processing. We classify the SWFs as pure fairness metrics, functions that
combine fairness and efficiency, and statistical fairness metrics.

6.1 Pure fairness measures

Social welfare functions that measure fairness alone, without an element of
efficiency, are of two basic types: inequality metrics and fairness for the dis-
advantaged.

Inequality metrics abound in the economics literature. Some simple ones are
represented by the following SWFs (which negate the inequality measure):

—(1/@) (Umax — Umin) for the relative range

—(1/u u; — U for the relative mean deviation
R VL) R

NIEg

—(1/a) [(l/n) Z(ul — ﬁ)Q] for the coefficient of variation
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There is also the well-known Gini coefficient, which is proportional to the area
between the Lorenz curve and a diagonal line representing perfect equality. It
corresponds to the SWF

1
W(u)=1-5—s > i =y
i

Although these SWFs are nonlinear, all but the coefficient of variation have LP
models. The coeflicient of variation has a convex quadratic programming model
with linear constraints, for which there are very efficient specialized solvers.

Other fairness-based SWF's are concerned with the lot of the disadvantaged.
The Hoover index measures the fraction of total utility that would have to be
transferred from the richer half of the population to the poorer half to achieve
perfect equality. The SWF is

W) = =53 fu — 1

2na

The Hoover index is proportional to the relative mean deviation and can there-
fore be optimized using the same LP model.

The McLoone indexr compares the total utility of individuals at or below
the median utility to the utility they would enjoy if all were brought up to the
median utility. The index is 1 if nobody’s utility is strictly below the median
and approaches 0 if there is a long lower tail. The SWF is

1
W= T 2

i€l(u)



where @ is the median of utilities in w and I'(u) is the set of indices of utilities at
or below the median. The McLoone index can be optimized in an MILP model.

The Hoover and McLoone indices measure only the relative welfare of dis-
advantaged parties, and not their absolute welfare. The mazximin criterion ad-
dresses both. It is based on the Difference Principle of John Rawls, which states
that inequality should exist only to the extent it is necessary to improve the lot of
the worst-off (Rawld [1999], [Freeman [2003], Richardson and Weithman [1999]).
It can be plausibly extended to a lexicographic maximum principle. The SWF
is simply

W (u) = min{u,}

and has an LP model.

Purely fairness-oriented SWFs can be used when equity is truly the only
issue of concern. In particular, they are unsuitable for the mortgage problem,
where overall utility is a prime consideration.

6.2 Combining fairness and efficiency

Several SWFs combine equity and efficiency, sometimes with a parameter that
regulates the relative importance of each. Perhaps the best known is alpha
fairness, for which the SWF is

1

11—«

Z log(u;) fora=1

Zu%_o‘ fora>0, a#1
Wa(u) = i

Larger values of a imply a greater emphasis on equity, with & = 0 corresponding
to a pure utilitarian criterion ), u;, and o = oo to a pure maximin criterion.
An important special case is @« = 1, which corresponds to proportional fairness,
also known as the Nash bargaining solution. It is widely used in telecommunica-
tions and other engineering applications. Both proportional fairness and alpha
fairness have been given axiomatic and bargaining justifications (Nash [1950],
Harsanyi [1977], Rubinstein |1982], IBinmore et all [1986], [Lan et all [2010]).
The alpha fairness SWF is irreducibly nonlinear, but because it is concave for
all a, it can be maximized with reasonable efficiency by NLP methods.

Alpha fairness is conceptually a reasonable choice for the mortgage problem,
because the bank can obtain any desired balance between utility and fairness by
adjusting . While it is difficult to justify to stakeholders any particular choice
for the value of «, a perceived bias against minorities can always be addressed
by increasing «. On the other hand, the presence of 0—1 variables x; produces
an MINLP model, which can be hard to solve. Thus alpha fairness may be
practical only for problems with at most a few hundred applicants.

The Kalai-Smorodinsky (K—S) bargaining solution, proposed as an alterna-
tive to the Nash bargaining solution, minimizes each person’s relative concession.
That is, it provides everyone the largest possible utility relative to the maximum



one could obtain if other players are disregarded, subject to the condition
that all persons receive the same fraction § of their maximum. In addition
to the bargaining justification of [Kalai and Smorodinsky [1975], this approach
has been defended by [Thompson [1994] and is implied by the contractarian
philosophy of |Gautier [1983]. The SWF can be formulated

> ui,  if w = pu™™ for some S with 0 < g <1
0, otherwise

ww = {

where u"™ = max(z u)es,, wi for each i. It can be optimized by maximizing

subject to u = fu™** and 8 < 1, an easy LP problem.

The K-S criterion cannot be used for the mortgage problem, because the
role of 0—1 variables in the problem almost ensure that the optimization model
will be infeasible. Since u®®* = @}, we must have U;(z;) = Bu} for all i. But
U;(x;) = v; + (4; — U;)x;, which means that there must be a ratio § that, for
each 4, is equal to either ¥;/u} or @;/u} (which correspond to setting z; = 0 or
x; = 1, respectively). It is very unlikely that the problem data will have this
property.

Williams and Cookson [2000] suggest two threshold criteria for combining
maximin and utilitarian objectives in a 2-person context. One uses maximin
until the cost of fairness becomes too great, whereupon it switches to utilitari-
anism, and the other does the opposite. [Hooker and Williams [2012] generalize
the former to n persons by proposing the following SWEF:

=

Walu)=(n—1)A+ Zmax {ul — A,umm}
i=1

where Ui, = min;{u;}. The parameter A regulates the equity/efficiency trade-
off in a way that may be easier to interpret in practice than the a parameter:
parties whose utility is within A of the lowest utility receive special priority.
Thus the disadvantaged are favored, and A defines who is disadvantaged. As
with the o parameter, A = 0 corresponds to a purely utilitarian criterion and
A = oo to a maximin criterion. Hooker and Williams provide an MILP model
of the SWF and show that it is sharp (i.e., its continuous relaxation describes
the convex hull of its feasible set). Partly for this reason, they found that the
model solves rapidly in computational tests.

This threshold approach is a reasonable choice for the mortgage problem.
Since the problem has discrete variables regardless of the SWF used, the MILP-
based threshold formulation adds relatively little complexity to the problem. In
addition, loan officers can specify in a meaningful way when an applicant is to
be considered disadvantaged, by selecting an appropriate value of A.

One weakness of the model is that the actual utility levels of disadvantaged
parties other than the very worst-off have no effect on the measurement of social
welfare, as long as those utilities are within A of the lowest. As a result, the
socially optimal solution may not be as sensitive to equity as one might desire.
Chen_and Hookerl [2020ab] address this issue by combining utilitarianism with a
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leximaz rather than a maximin criterion. A leximax (lexicographic maximum)
solution is found by first maximizing the lowest utility, then while holding it
fixed, maximizing the second lowest utility, and so forth. Chen and Hooker
combine leximax and utilitarian criteria by maximizing a sequence of threshold
SWEFs that have tractable MILP models. Their approach may yield more
satisfactory solutions of the mortgage problem.

6.3 Statistical bias metrics

While we argue that bias metrics afford an overly narrow perspective on fairness,
they nonetheless can be expressed as SWFs if desired. The utility vector u
becomes simply a binary vector in which w; = 1 if individual ¢ is selected for
some benefit, and u; = 0 otherwise. In the mortgage example, the benefit is
a mortgage loan. We set constant a; = 1 when person i actually qualifies for
selection (as for example when person ¢ in the mortgage training set repaid the
loan), and a; = 0 otherwise. Two groups are compared, respectively indexed
by N and N’. One is a protected group, such as a minority subpopulation, and
the other consists of the rest of the population.
For example, demographic parity has the SWF

INI 2w IN’I 2

ieN i€ N’

W(u) =

Equalized odds can be measured in two ways, one of which is equality of oppor-
tunity:

W(u)=1-

’Z’LGN @ity Dien @il
Dien i Diens Gi

Another SWF represents accuracy parity:

W (u) Z aiu; + (1 —a;) (1 — uy) |N’| Z a;u; + al)(l—ui))

ieN i€N’

and still another predictive rate parity:

Wu)=1-
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The computational challenge varies widely across the various bias-oriented SWFs.
The first three SWFs above give rise to linear models (which become MILP
models due to the 0-1 restriction on w;), while the last produces an extremely
difficult nonconvex MINLP model.

Bias measures are inappropriate as social welfare objectives for the mort-
gage problem, because they take no account of efficiency. One can, of course,
maximize predictive accuracy subject to constraints on the amount of bias, but
this has a number of drawbacks:
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e As previously argued, it provides a very limited perspective on the utility
actually created by decisions. Indeed, the utility vector consists only of
0-1 choices.

e There is no consensus on which bias measure is suitable in a given context,
if any. Bias measures were developed by statisticians to measure predictive
accuracy, not to assess fairness.

e There is no principle for balancing equity and efficiency. If equity is
one of the objectives, it should be part of the objective function. The
choice of that function obliges one to justify the equity/efficiency trade-off
mechanism in a transparent manner.

e Bias measurement forces one to identify a priori which individuals in a
training set should be selected for benefits (as indicated by a;). In a social
welfare approach, no prior decisions of this kind are necessary.

e Bias measurement forces one to designate “protected groups” (as indicated
by the index set N). There is no clear principle for selecting which
groups should be protected, unless one is content simply to recognize those
mandated by law.

7 Welfare-based Fairness: A General Framework

In practical applications, we can rely solely on a fully specified optimization
model to determine optimal decisions with respect to the selected notion of
fairness and social welfare; in fact, this is the standard approach in the opti-
mization literature we have reviewed. We discuss in the mortgage loan example
that specifying the model might require estimation and prediction tools such as
machine learning models. Therefore, a more flexible and realistic use case is to
integrate the optimization-for-fairness paradigm with general AI methods.

Drawing motivation from both settings, we formalize a general framework
for designing Al systems with welfare-based fairness guarantees. Through this
framework, we hope to streamline the process of making fair decisions to attain
the desirable welfare outcomes, and distinguish the role played by social welfare
optimization from the other components. This framework consists of three steps,
which we explain in detail as follows.

7.1 Step 1: Specify decision problem

We begin by specifying the needed components of the decision problem. This
step is critical for the success of later steps as it ensures we have a precise under-
standing of the problem scope and context. We highlight some key components
that commonly exist in problem instances. Note that additional factors may be
needed in specific problems.

12



e Task: the task refers to the decision actions in question. To specify the
task is to describe the downstream actions and identify the resources to
allocate. In our running example, the bank’s task is to decide whether to
grant loans to applicants.

e Stakeholders: stakeholders are individuals or groups directly or indirectly
affected by the decisions, namely, they are the utility recipients in the
problem. When a decision involves a wide variety of stakeholders that is
impractical to all be considered, it is important to select stakeholders in
a compatible manner with the chosen task and goals. For instance, in the
running example, loan applicants and the bank are necessary stakeholders,
and optional choices include stockholders and the community at large.

e Goals: we characterize the desirable outcomes as goals of the decision
problem. A high-level structure is to define separate fairness and welfare
goals. As an example, when allocating mortgage loans, the bank’s fairness
goals may include prioritize applicants in need to improve their access to
opportunity; its welfare goals may include guarantee a sufficiently low
loan default rate to benefit the bank and its stockholders, and seek an
efficient use of loan funds to benefit the local community. These goals will
later serve as the guiding principles for defining the social welfare function
W (u) to be used as the objective function.

e Constraints: these are restrictions in the problem context that limit which
actions are feasible, namely, we specify constraints to define the domain
Sx. A main source of restriction is the scarcity of resources, for example,
the bank is subject to a budget constraint. In addition, the decision con-
texts may impose constraints on actions, for instance, the loan allocated
to an applicant should not exceed the requested amount.

7.2 Step 2: Define utility and social welfare functions

With a clear problem statement, we continue to define utility functions and
social welfare functions. Both definitions need to be compatible with the deci-
sion task and goals. The utility function is a function of the decision actions:
the utility value indicates the degree of preference a party has for its assigned
outcome, namely, when i is better off under x in comparison to @, we should have
U;(x) > U;(2). Depending on the problem context, the utility function may be
dependent on a single component, such as, assign a fixed positive utility for
receiving a positive classification and zero otherwise. Alternatively, the utility
value can aggregate multiple components relevant to an individual’s well-being,
such as, in the mortgage example, we can define utility to incorporate negative
cost and positive wealth impacts from the loan decision.

A social welfare function evaluates the desirability of an outcome x via
its corresponding utility distribution w. The selected SWF should capture the
decision goals in a way that a greater social welfare value indicates improvement
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in achieving the goals. As we discuss in Section[6l the mortgage problem requires
a SWF combining fairness and efficiency.

7.3 Step 3: Develop decision models

In the previous steps, we identify the components needed to formulate the social
welfare optimization problem (2)). We next distinguish two types of information
context that call for different schemes for developing optimization-based decision
models.

Full Information: Integration with Rule-based AI

The first context occurs when we have the full information necessary to state the
social welfare optimization problem. Specifically, we know all the parameters
needed in the utility function, constraints and the social welfare function. This
information may be available from past data, or provided by experts utilizing
their domain knowledge. For instance, in the mortgage example, the bank may
hire experts to evaluate parameter values based on their expertise. With a fully
defined optimization model, we can directly solve for the optimal solution and
make decisions based on the obtained solution. Recall from our literature review
that this case has been broadly studied in the optimization literature.

More broadly, the full information context is suitable for integration by
means of rule-based AI, which utilizes a set of rules to encode knowledge relevant
to the decision and to produce pre-defined outcomes. Rule-based systems are
increasingly recognized for their capacity to support principled and transparent
AT in various application domains. For instance, Brandom [201&] observes the
trend in autonomous vehicle industry whereby “companies have shifted to rule-
based AI, an older technique that lets engineers hard-code specific behaviors
or logic into an otherwise self-directed system.” Moreover, [Kim et all [2021]
demonstrate that ethical principles can be precisely represented as rules to
include in an AT system. In fact, they suggest that a rule-based formulation
is necessary for making ethical decisions.

We highlight two possible schemes to implement the integration of rule-based
AT and optimization. The first method is to use the optimization problem to
guide the selection of rules to encode into the Al system, then rely on the rule-
based system to make decisions. To illustrate in the mortgage example, we
suppose the bank pre-defines several classes of applicants and wishes to specify
rules on whether to approve loans from each class. The bank can determine
these rules using an optimization model which contains a 0-1 variable to denote
the loan approval status (yes or no) for each class, and optimizes a social welfare
objective function defined with historical data about the loan applications,
decisions and default outcomes for all classes. We then use the solved optimal
solutions to state the decisions rules for each class. Such a rule-based system is
straightforward to use: for a new loan applicant, the bank would first identify
which class the applicant belongs to, then approve the loan if the corresponding
rule for the class says so and reject otherwise.
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Alternatively, in an Al rule base, we can include rules that provide instruc-
tions for formulating the optimization problem and for choosing actions based on
the optimal solution. This is consistent with the proposal from [Bringsjord et all
[2006] that one could constrain AI systems with ethical principles formalized
as logic statements, such as if-then statements. For example, the bank may
consider rules that require applicants with certain features to receive reasonable
prioritization, and these rules can be captured as constraints or incorporated
into the objective function in the optimization model. Furthermore, when
making the final loan decisions, the bank may define rules about implementing
the allocation solution obtained from the optimization problem.

Partial Information: Integration with Machine Learning

A second type of context arises when a limited amount of information is required
to formulate the relevant optimization problem. The partial information case
motivates a natural integration of optimization with machine learning. In
particular, we focus on supervised learning methods that train predictive models
from labelled data. Suppose a training data set is D = {(x;,y;)}?, where
X; is the feature vector and y; is the true label, then a supervised learning
method trains a predictor function h with the accuracy in the predicted labels
{f(xi)} as the primary goal. The ML literature has studied a large number of
formats for h, ranging from a simple functional form in logistic regression and
support vector machine to more complex structures like decision tree and neural
network. Optimization, as a technique, is broadly used to train ML models, but
our emphasis is to integrate optimization as the fairness-seeking strategy.

We propose two integration approaches that differ in the role played by ML.
The first one follows a post-processing view that uses ML solely for estimating
unknown parameters. To be more specific, after formulating the optimization
model in the first two steps, we identify the unknown parameters in the for-
mulation. We then consider each set of parameters separately, and choose
an appropriate ML method to train a predictor function for the parameter
values from available data. For instance, to predict the probability p; of loan
default, the bank may train a neural network based predictor using historical
data containing past loan applicants’ profiles and their default records. The pre-
dicted probabilities then serve as input to the optimization problem underlying
the bank’s loan decisions. It is notable that all supervised learning methods
are suitable for such post-processing integration, and the decision maker has
the flexibility to choose the ML methods fitting for the problem context and
computational requirement.

The other approach is in-processing integration where social welfare opti-
mization is directly embedded into a machine learning model. We can consider
this approach as a type of in-processing fair ML. method, and the key distinction
with the majority of literature is that we encode fairness in a social welfare func-
tion. More precisely, we implement the integration by modifying the standard
accuracy objective in a training model with a social welfare function. The
SWF captures the desirable fairness and efficiency criteria, and can contain the
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accuracy objective as an efficiency-related component. To further formalize,
we use L(h,D) to denote a loss function that evaluates the prediction error
on the training data, then a ML model is trained to seek a loss minimizing
predictor h* € argmin, L(h,D). Since h has a pre-selected form, e.g. regression
function, neural network, with unknown parameters, the training problem is
solving for parameter values. To incorporate social welfare considerations, we
modify the standard loss function to include a suitable social welfare measure W.
A simple example is h* € argmin, AL(h, D)—(1—X)W (h, D), where the objective
function allows the accuracy of prediction (measured via L) to contribute to
welfare. Since the choice of W clearly affects the complexity of the learning
model, successful in-processing integration requires the ability to design W into
a format that can be handled effectively in machine learning.

As a final remark, we briefly discuss the integration potentials with two
other core machine learning methods, unsupervised learning and reinforcement
learning (RL). Fairness has been studied in both methods, but the progress
is much more limited compared to fair supervised learning. Within unsuper-
vised learning, we focus on clustering methods. We can easily apply post-
processing integration to clustering methods and utilize the trained clusters as
input to specify the optimization problem. For instance, in the loan example,
the bank can use clustering algorithms to decide a categorization of financial
profiles that will play a role in the optimization formulation. Recent works
in fair clustering, e.glAbraham et all [2019], Deepak and Abraham [2020], have
explored an in-processing strategy to extend K-means clustering to include
fairness considerations by adding a fairness component to the usual K-means
objective function. This indicates the potentials of in-processing integration,
that is, we can define social welfare based fairness component to modify the
usual clustering objective functions. In reinforcement learning, the goal is to
search for a reward-maximizing policy in a dynamic environment that is typically
modelled as a Markov Decision Process. Defining and achieving fairness in
RL is more challenging due to the sequential and dynamic structure. Weng
[2019], ISiddique et all [2020] propose a novel framework for fair multi-objective
reinforcement learning based on welfare optimization. The key component of
their proposal is to replace the standard reward objective with a particular
social welfare function on the reward distribution. This exactly captures the
perspective of in-processing integration, hence demonstrates the potentials of
social welfare optimization for seeking fairness in RL.

8 Discussion and Conclusion

We formalize a general framework for using optimization to incorporate welfare-
based fairness into AI applications. The framework provides a guideline for
formulating a decision task into a social welfare optimization problem. In
particular, we illustrate how optimization can be integrated with rule-based Al
systems and machine learning models. By expanding the fairness problem to the
optimization of social welfare functions, one can achieve a broader perspective
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on fairness that are driven by the well-beings of stakeholders and characterize
the broader fairness concepts in a principled way. Optimization models also
provide the flexibility of adding constraints on resources and other problem
elements, while harnessing the power of highly advanced optimization solvers.

We conclude the paper by outlining a research program to explore some key
questions related to the framework.

e There is a wide gap between the presented general formalization of integra-
tion strategies and practical implementations of integrated methods. For
integration with rule-based Al, one important direction is to investigate
how to build ethics-sensitive rule bases to fit into different social welfare
optimization scenarios. Previous works on formulating ethics principles
into rules, e.g. [Bringsjord et all [2006], [Kim et all [2021], may provide
guidance for this direction. For integration with machine learning, future
research could explore the in-processing perspective and study how to
define social welfare functions to use as the objective in machine learning
models. The modified objective functions need to have a format that can
be efficiently trained, and the trained models need to provide the desirable
fairness and welfare guarantees.

e Although optimization solvers have been developed over decades, not
all classes of optimization models are readily solvable by state-of-the-art
software. Among all classes, linear programming and convex programming
problems can be considered tractable up to reasonably large sizes, but non-
convex formulations including some mixed integer programming problems
are more restricted. For practical use of social welfare optimization mod-
els, one may need to apply available computational strategies or design
problem-specific heuristics to speed up solving the optimization problems.

e The social welfare functions we consider are of a static nature, that is,
a SWF does not attempt to capture potential dynamics in the utilities.
A SWF takes utility values as the input, and the function values char-
acterize the associated static utility distributions. While such a static
view is often sufficient and reasonable for a one-shot decision problem,
a dynamic perspective may be required in sequential decision problems
where decisions need to be made repeatedly and the selected actions have
incremental impacts on the long term social welfare. Future research could
explore how to extend the presented optimization based framework to fit
a dynamic view of welfare and fairness. Although this is not a trivial task,
there are many well-developed techniques to utilize, such as, stochastic
optimization, Markov decision process, etc.
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