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Abstract

A trade-off between fairness and efficiency is an important element of many
practical decisions. We propose a principled and practical method for bal-
ancing these two criteria in an optimization model. Following an assessment
of existing schemes, we define a set of social welfare functions (SWFs) that
combine Rawlsian leximax fairness and utilitarianism and overcome some
of the weaknesses of previous approaches. In particular, we regulate the
equity/efficiency trade-off with a single parameter that has a meaningful
interpretation in practical contexts. We formulate the SWF's using mixed
integer constraints and sequentially maximize them subject to constraints
that define the problem at hand. We demonstrate the method on prob-
lems of realistic size involving healthcare resource allocation and disaster
preparation, with solution times of several seconds at most.
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1. Introduction

Fairness is an important consideration across a wide range of optimiza-
tion models. It can be a central issue in health care provision, disaster
planning, workload allocation, public facility location, telecommunication
network management, traffic signal timing, and many other contexts. While
it is normally straightforward to formulate an objective function that reflects
efficiency or cost, it is not obvious how to express fairness in mathematical
form. When both fairness and efficiency are desired, as is typical in practice,
there is the additional challenge of mathematically integrating them in a
tractable model.
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For example, when a natural disaster brings down the electric power grid,
crisis managers may dispatch crews to urban areas first in order to restore
power to more households quickly, thus maximizing efficiency. Yet this may
cause rural areas to experience very long blackouts, which could be seen as
unfair. A more satisfactory solution might give some amount of priority to
rural customers, but without imposing too much harm on the population
as a whole. Similarly, traffic signal timing that minimizes total delay may
result in impracticably long wait times for traffic on minor streets that cross
a main thoroughfare. Again a balance between equity and efficiency may
be desirable. The issue can be especially acute in health care. Expensive
treatments or research programs that prolong the life of a relatively few
gravely ill patients may divert funds from preventive health measures that
would spare thousands the suffering brought by less serious diseases.

We undertake in this paper to develop a practical and yet principled
approach to balancing efficiency and fairness that can be implemented in
a mixed integer/linear programming (MILP) model. While there are many
possible measures of fairness, we choose a criterion based ultimately on John
Rawls’ concept of justice-as-fairness (Rawls 1999). One consequence of the
Rawlsian analysis is his famous difference principle, which states roughly
that a fair distribution of resources is one that maximizes the welfare of
the worst-off. Rawls defends the principle with a social contract argument
that can be plausibly extended to lexicographic maximization. That is, the
welfare of the worst-off is first maximized subject to resource constraints,
whereupon the welfare of the second worst-off is maximized while holding
that of the worst-off fixed, and so forth. The Rawlsian perspective has been
defended by closely reasoned philosophical arguments in a vast literature
(Richardson and Weithman 1999, Freeman 2003).

The Rawlsian argument goes roughly as follows. Let’s suppose that all
concerned parties adopt an agreed-upon social policy in an original position
behind a “veil of ignorance” as to their identity. It must be a policy that
all parties can rationally accept upon learning who they are. Rawls argues
that no rational decision maker will accept a policy in which she is the least
advantaged, unless she would have been even worse off under any other
policy. A fair outcome should therefore maximize the welfare of the worst-
off. The argument can be employed recursively to defend a leximax criterion.
Rawls intended his principle to apply only to the design of social institutions,
and to pertain only to the distribution of “primary goods,” which are goods
that any rational person would want. Yet it can be plausibly extended to
distributive justice in general, particularly if it is appropriately combined
with an efficiency criterion.



A fundamental question that arises in the integration of equity and
efficiency is how to regulate the trade-off between the two. We find in a
survey of existing models that it is rarely clear how trade-off parameters
can be selected and interpreted in a practical context. However, the model-
ing scheme of Hooker and Williams (2012) offers a potentially appealing
approach to this problem. It governs the trade-off between a Rawlsian
maximin and a utilitarian criterion with a single parameter A that has
the same units as utility and can be related naturally to the problem at
hand. The value of A is chosen so that parties whose utility is within A of
the lowest are seen as sufficiently disadvantaged to deserve priority. Larger
values of A result in greater equity. The model also has a practical mixed
integer /linear programming (MILP) formulation.

The Hooker-Williams (H-W) scheme has a serious limitation, however.
Because its fairness component is the maximin criterion, the actual utility
levels of disadvantaged parties other than the very worst-off have no bearing
on social welfare. As a result, the solution can be insensitive to most
equity considerations. This outcome is particularly unsatisfactory when
resource limitations tightly constrain the benefits available to a few parties, a
situation we have found to be common in practice. The H-W model awards
what utility it can to the most highly-constrained party, whereupon the
welfare of other disadvantaged parties becomes irrelevant, and all solutions
become virtually indistinguishable with respect to equity. The fairness
criterion plays essentially no role in the determination of an optimum among
a potentially large number of outcomes considered equally desirable by the
H-W scheme, even for arbitrarily large values of A.

A natural way to address this problem is to combine efficiency with a
lexicographic criterion rather than a maximin criterion. This allows the
utility levels of all disadvantaged parties to factor into social welfare. How-
ever, it poses a difficult modeling challenge at both a theoretical and a
computational level. We meet the challenge by maximizing a sequence of
social welfare functions that, except for the first, are quite different from
the single function used in the H-W model. Nonetheless the parameter
A has a similar interpretation, with A = 0 corresponding to a purely
utilitarian solution and A = oo to a purely leximax solution. We also
show how to formulate these optimization problems as MILP problems that
have substantially different constraint sets and polyhedral properties than
the H-W formulation. We solve the sequence of MILP models in a matter
of seconds for example problems of realistic size.

The paper is organized as follows. We begin in Section 2 with an assess-
ment of the primary existing schemes for combining equity and efficiency in



an optimization model. These include convex combinations of utility with an
equity criterion, alpha fairness (and the special case of proportional fairness),
the Kalai-Smorodinsky bargaining solution, and threshold models (of which
the H-W scheme is an example). We then define a sequence of SWFs
that can be maximized, subject to the constraints of the given problem,
to obtain a socially optimal solution for a specified tradeoff parameter A.
A key element of our proposal is a set of practical MILP models for these
optimization problems. We also describe a family of valid inequalities that
can be added to tighten the models. We extend these results to the common
situation in which utility is distributed to groups rather than individuals,
such as organizations, regions, or demographic groups. We conclude by
demonstrating the practical applicability of our approach on a healthcare
resource allocation problem and an emergency preparedness problems. The
former allows us to compare results with those reported by Hooker and
Williams (2012) on the same problem. The latter is a shelter location
and assignment problem of realistic size. We find that our approach yields
reasonable and nuanced socially optimal solutions for both problems, with
computation times ranging from a fraction of a second to 18 seconds for
a given A. Two Appendices, provided in an Online Supplement, contain
proofs of theorems that were not proved in the body of the paper.

2. Related Work

An optimization model for integrating fairness and efficiency can be
viewed as maximizing social welfare function (SWF') F'(u). The value of the
function is interpreted as measuring the desirability of a given distribution
u = (u1,...,u,) of utilities, where u; is the amount of utility allocated to
party ¢. The function is maximized subject to resource limitations and other
constraints imposed by the application.

2.1. Convexr Combinations

The most obvious scheme for combining fairness and efficiency is a convex
combination of the two. This corresponds to a SWF of the form

F(u)=(1-)\) Zu + AP (u) (1)

where ®(u) is a fairness measure. A number of functions ®(u) have been
proposed, such as inequality metrics, the Rawlsian maximin principle, and
leximax fairness (Cowell 2000, Jenkins and Van Kerm 2011, Karsu and
Morton 2015).



A perennial problem with convex combinations is that it is difficult to
interpret A, particularly since ®(w) is typically measured in units other than
utility. For example, if we select the widely-used Gini coefficient G(u) as
a measure of equity, then we must combine utility with a dimensionless

quantity ®(u) = 1 — G(u), where
> Jui — uy]

1<j
%

Another difficulty is that fairness measures are almost always nonlinear,
which can pose tractability problems.

Eisenhandler and Tzur (2019) use a product rather than a convex com-
bination of utility and 1 — G(u), which reduces to an SWF that is easily

linearized: )
F(u) :Zui— ﬁzmj_u"
1

1<J

G(u) = (2)

Yet we now have a convex combination of total utility and another equality
metric (negative mean absolute difference) in which A = 1/2. One may ask
why this particular value of X is suitable.

Since equality is often unsuitable as a fairness measure (Frankfurt 2015,
Scanlon 2003), one may wish to use the Rawlsian criterion ®(u) = min;{u;}.
It results in a convex combination of quantities that are measured in the
same units, but it is again unclear how to select a suitable value of A. Note
that if we index utilities so that vy < --- < wu,, the convex combination
becomes simply a weighted sum u1 + (1 — A) >, u; that gives somewhat
more weight to the lowest utility. It is unclear how much more weight is
appropriate.

One might also attempt to formulate a convex combination of efficiency
with a leximax rather than a maximin criterion. Yet it is unclear how to cap-
ture leximax in a function ®(u) when the utilities cannot be ordered by size
in advance. Ogryczak and Sliwinski (2006) show how to formulate leximax
in an optimization model without pre-ordering, but this requires coefficients
that vary enormously in size and can introduce numerical instability. There
is also no evident means for incorporating an efficiency criterion into the
model.

2.2. Alpha Fairness and Kalai-Smorodinsky Fairness
Alpha fairness is a parameterized combination of equity and efficiency
that does not rely on a convex combination. It is based on an SWF of the



form
1
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Z log(u;) fora=1

Zuil_a fora >0, a#1
Fo(u) = ’

Larger values of o imply a greater emphasis on equity, with a = 0 corre-
sponding to a pure utilitarian criterion and o = co to a maximin criterion.
Lan et al. (2010) provide an axiomatic treatment, and Bertsimas et al.
(2012) study worst-case equity/efficiency trade-offs. An interpretation of
a is that utility u; must be reduced by (uj/u;)® units to compensate for
a unit increase in u; (< u;) while maintaining constant social welfare. Yet
it is again unclear what kind of trade-off, and therefore what value of «, is
appropriate for a given application. There is also the computational issue
that Fi,(u) is nonlinear.

A well-known special case of a-fairness arises when a = 1. This results
in proportional fairness, which is equivalent to the Nash bargaining solution
(Nash 1950). Nash (1950) showed that his bargaining solution for two
persons is implied by a set of axioms for utility theory, including a strong
and perhaps questionable axiom of cardinal noncomparability across parties
(Hooker 2013). Harsanyi (1977), Rubinstein (1982), and Binmore et al.
(1986) showed that the Nash solution is the asymptotic outcome of certain
rational bargaining procedures, again based on strong assumptions.

Kalai and Smorodinsky (1975) proposed an alternative to the Nash
bargaining solution that minimizes each player’s relative concession. The
approach is defended by Thompson (1994) and is consistent with the contrac-
tarian ethical philosophy of Gautier (1983). Mathematically, the objective is
to find the largest scalar § such that u = (1—)d+Su™* is a feasible utility
vector, where each u;"®* is the maximum of u; over all feasible utility vectors
u. The bargaining solution is the vector u that maximizes 5. Unfortunately,
the K-S criterion can lead to anomalous situations that force overall utility
gain to be arbitrarily small when it can be much greater with minimal
sacrifice of fairness (Hooker 2013).

2.8. Threshold Models

Williams and Cookson (2000) proposed a pair of 2-person SWFs based
on a utility or equity threshold. A utility-threshold model uses the maximin
criterion unless the sacrifice in total utility exceeds a threshold, in which
case it switches to a utilitarian criterion. An equity-threshold model uses a
utilitarian criterion unless inequality becomes excessive, when it switches to



maximin. Hooker and Williams (2012) extended the utility-threshold model
to the m-person criterion described earlier, and McElfresh and Dickerson
(2018) proposed a similar scheme based on a leximax rather than maximin
criterion. Our aim in the present paper is likewise to combine leximax and
efficiency in a threshold model, but we will argue that it offers two major
advantages relative to the McElfresh and Dickerson approach.

The 2-person SWF implied by Williams and Cookson’s utility-threshold
model can be formulated

_ ) ur Fug, if Juy —uz| 2 A
F(ui,uz) = { 2min{uy,us} + A, otherwise ®)

The function is utilitarian when |u; — ua| > A and represents a maximin
criterion otherwise. Indifference curves (contours) of the SWF are illustrated
in Fig. 1. The maximin criterion min{u;,us} is modified in (3) to obtain
continuous contours. We will see that maintaining continuity is a major
factor in the design of threshold-based SWEFs.

The feasible set in Fig. 1 is the portion of the nonnegative quadrant under
the curve. It represents all feasible utility outcomes that are permitted by
the resource budget and other constraints. The shape of the curve indicates
that when party 1’s utility reaches a certain point, further improvement
requires extraordinary sacrifice by party 2 due to the transfer of resources.
The utilitarian solution (black dot in the figure) might therefore be viewed
as preferable to the maximin solution (small open circle) and in fact yields
slightly more social welfare as indicated by the contours.

Hooker and Williams (2012) extend this social welfare function to n
persons as follows:

n

Fi(u) = (n— DA +nugy + Y (us —ugy — A)F (4)

i=1
where ()" = max{0, a}. Here we adopt the convention that (ugrys - Ugmy)
is the tuple (uq,...,u,) arranged in non-decreasing order. We refer to the
function as F} because it will be the first in a series of functions Fi, ..., F,

we define later. It may be more intuitive to rewrite (4) as

n

t(u)
Fi(u) = (tu) = DA+ ugy + > ug
i=1 )41

i=t(u
where t(u) is defined so that wy, ..., Uy are within A of uy; that is,
ugy—ugy < Aifand only if i < #(u). We will refer to utilities wy, . . ., Ug(u))
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Figure 1: Piecewise linear social welfare contours for 2 persons.

as being in the fair region and utilities w(y)41)s---,Up) as being in the
utilitarian region. The function F)(u) therefore has the effect of summing all
the utilities, but with the proviso that utilities in the fair region are counted
as equal to uyy. The term (¢(u) — 1)A is added to ensure continuity of the
function.

The parameter A therefore has an interpretation that can be described
independently of its role in the SWF. Namely, any party with utility within
A of the lowest is viewed as disadvantaged and deserving of special consider-
ation. The SWF then defines the special consideration to be an identification
of the disadvantaged party with the worst-off party, which is given dispro-
portionate weight in the summation of utilities—namely, weight equal to
the number of utilities within A of the lowest.

A problem with (4), however, is that the actual utility levels of the
disadvantaged parties, other than that of the very worst-off, have no effect
on the value of the SWF. This is illustrated in the 3-person example of
Fig. 2, which shows the contours of F'(uy,ug,us) with A = 3 and w; fixed to
zero. The SWF is constant in the shaded region, meaning that the utilities
allocated to persons 2 and 3 have no effect on social welfare as measured
by Fi(u), so long as they remain in the fair region. As a result, there are
infinitely many utility vectors that maximize social welfare, some of which
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Figure 2: Contours of Fi(0,u2,us). The function is constant in the shaded region.

differ greatly with respect to utilities in the fair region. One can add a tie-
breaking term e(ug +u3) to the social welfare function, where € > 0 is small,
so as to maximize utility as a secondary objective. Yet this still does not
account for equity considerations within the fair region.

To obtain a threshold model that is sensitive to the actual utility levels
of all the disadvantaged parties, one might combine utility with a leximax
criterion rather than a maximin criterion. McElfresh and Dickerson (2018)
propose one method of doing so in the context of kidney exchange. Their
method is related to the H-W approach, but it relies on the assumption that
the parties can be given a preference ordering in advance. It first maximizes
a SWF that combines utilitarian and maximin criteria in a way that treats
the most-preferred party as the worst-off. If all optimal solutions of this
problem lie in the utilitarian region, a utilitarian criterion is used to select
one of the optimal solutions. (Here, a utility vector w is said to be in the fair
region if max;{u; } — min;{u;} < A, and otherwise in the utilitarian region.)
Otherwise a leximax criterion is used for all of the optimal solutions, subject
to the preference ordering (i.e., maximize wu; first, then ug etc.). If we index
the parties in order of decreasing preference, the SWF is

nuy, if Ju; — uj| < Afor all i, j
F(u) = Z u; + (Nt — N7)A, otherwise (5)



where N* = |{i | uy > w;}| and N™ = [{i | w1 < w;}| and the term
(Nt — N7)A achieves continuity.

This approach can be seen as having two limitations. One, already noted,
is that it is necessary to pre-specify a preference ranking of parties, as in
the kidney exchange problem. This is not possible in many applications.
Another is that the leximax criterion is not used until optimal solutions
of the SWF are already obtained, and then applied only to the optimal
solutions. We wish to allow the leximax criterion to play a role in evaluating
all the possible solutions. These limitations are overcome by our proposal,
described in the next section. An earlier version of our scheme appears in
a brief conference paper (Chen and Hooker 2020), which uses somewhat
different SWEFs.

3. Defining the Social Welfare Functions

To combine leximax and utilitarian criteria in a threshold model, we
propose to maximize a sequence of social welfare functions Fy (u), ..., Fy,(u),
each of which combines maximin and utilitarian measures. The first function
Fi(u) is the H-W function (4) defined earlier and is maximized over u =
(u1,...,un) to obtain a value for u(;y. Each subsequent function Fj(u) is
maximized over wpy,...,un,), while fixing utilities ), ..., ug_1) to the
values already obtained, and while giving u ) a certain amount of priority.
The solution of this maximization problem determines the value of wgy.

The process terminates when maximizing Fy(u) yields a value of u,
that lies outside the fair region. At this point, Fj(w) is utilitarian, and
utilities wuy), - .., Uy are determined simultaneously by maximizing Fj(u)
while fixing wy,...,up_1) to the values already obtained. We refer to
a utility vector (uyy,...,u(,)) that results from this process as socially
optimal.

We describe this sequential optimization procedure more precisely in
Section 4, but we must first define and explain the functions Fj(u) for
k > 2. Three main considerations govern the design of these functions and
give them a significantly different character than Fj(u).

e The fair region must be viewed as already defined, because u) was
fixed by maximizing F ().

e The utility uy should receive less priority as k increases, since the it
becomes less disadvantaged relative to the fixed lowest utility u ).
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e It turns out that the priority given u ) cannot depend on the number
of utilities in the fair region, as it does for k = 1, because this results
in an irreducibly discontinuous SWF. We therefore design Fj(u) so
that the priority depends only on k.

To develop SWFs that are somewhat analogous to the H-W function Fj(u)
while reflecting these considerations, it is helpful to write Fj(u) as

Fl(u):t(u)u< > ( —1 A—i—Zu
i=t(u)+1

The function assigns weight #(u) to utility u., and weight 1 to utilities in
the utilitarian region. We modify this pattern follows:

k
Zn—z—l—lu@jtz ugy —uny —A), ift(u) >k

Zn: if t(u) < k
—1

This SWF assigns weight n — k + 1 to utility u) and weight 1 to utilities
in the utilitarian region. As desired, the priority given to u)y depends only
on k and decreases as k increases.

As the functions Fy(u) are sequentially maximized for increasing values
of k, each utility w,y in the fair region receives priority at some point in the
process. This scheme incorporates lexicographic optimization in the sense
that the smaller utilities are determined earlier in the sequence, although
rather than maximizing ugy, in step k, we maximize a SWF that gives
priority to wgy. Utilitarianism in incorporated because each maximization
problem considers total utility as well as fairness.

For extreme values of A, this process yields purely utilitarian or purely
leximax solutions. When A = 0, we have t(u) = 1 for all u, and Fj(u)
reduces to a utilitarian criterion. The fair region is the single point u ),
and we solve the social welfare problem simply by maximizing Fj(w), which
yields a utilitarian solution. For sufficiently large A, ¢(u) = n for all feasible
u, and Fj(u) is (n — k + 1)ug, plus a constant for k£ = 1,...,n. Since all
u;s lie in the fair region, we sequentially maximize Fy(u) for k = 1,...n and
therefore obtain a pure leximax solution. Intermediate values of A combine
utilitarian and leximax criteria.

Figure 3 illustrates how maximizing Fij(u),..., F,(u) sequentially is
more sensitive to equity than maximizing Fj(u), which has the flat region

11
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Figure 3: Contours of F>(0, u2,us) with A = 3 and contour interval 1.

shown in Fig. 2, as noted earlier. Suppose we determine a value for u; by
maximizing Fi(u), say u; = 0. Then the function F5(u) has no flat regions,
as is evident in Fig. 3, and the solutions in the flat region of Fig. 2 are now
distinguished. Note that the contours are continuous, which can be shown
in general.

Theorem 1. The functions Fi(u) are continuous for k =1,...,n.

Proof. To prove continuity of Fj(u), it suffices to show that each term of
(4) is continuous, because a sum of continuous functions is continuous. The
first term of (4) is a constant, and the second term is continuous because
order statistics are continuous functions. Each term of of the summation is
continuous because it is the maximum of two continuous functions. To show
that Fj(u) is continuous for k > 2, it is convenient to write (6) as

k-1
Fi(u) = (n—i+ )um +(n—Fk+ 1)u<k>
i=1 n
—(n— k) (ugy —upy = AT+ Y (ugy —upy - A
i=k+1
which simplifies to
k-1 n
Z n—i+1)ug+(n—k+1) min{u<1>—|—A,u<k>}+2(u<i>—u<1>—A)+
i=1 i=k

12



Because order statistics are continuous, uy and w;y are continuous func-
tions of w. Also min{ugy + A, ugy} and (ug), — ugy — A)T are continuous
because they are the minimum or maximum of continuous functions. O

4. The Sequential Optimization Procedure

We now describe in detail how one can obtain a socially optimal utility
distribution. We first simplify notation by removing the initial constants
from Fj(u) for k > 2, resulting in the SWF

Fr(u) = (n—k+ Dugy + > _(ugy —ugy — A (7)
ik

This obviously has no effect on the optimal solution that results from max-
imizing the SWF. For convenience, we define Fy(u) = F(u).

We next maximize the social welfare functions Fy(u), ..., Fj,(u) sequen-
tially, subject to resource constraints, in such a way that maximizing Fy(u)
determines the value of the kth smallest u; in the socially optimal solution.
We therefore maximize F},(u) subject to the condition that the unfixed util-
ities are no smaller than the largest utility already fixed. Then the unfixed
u; with the smallest value in the solution becomes the utility determined by
maximizing Fj,(u).

We indicate resource limits by writing v € . In practice, they would
be formulated in a MILP model by introducing variables and constraints
that specify resource limitations and how resource allocations to individual
parties translate to utilities. This will be illustrated in our experiments in
Section 8.

To state the optimization procedure more precisely, we recursively define
a sequence of maximization problems Py, ..., P,, where P, maximizes F;(u)
subject to u € U, and P for k=2,...,nis

max F(u)
u; > Uy, 1€ I (8)
uel

The indices i; are defined so that u;; is the utility determined by solving P;.
Thus

i = argmin{ugj]}
icl;
where ull is an optimal solution of P; and I; = {1,...,n} \ {i1,...,4;-1}.

We denote by uj; = ug ] the solution value obtained for w; ; In P;. We need

13



only solve P, for k = 1,..., K + 1, where K is the largest k for which
44, < ui; + A. The solution of the social welfare problem is then

K] for i e Ix

Us; fori=1dq,...,9x1
U; =
U;

5. Mixed Integer Programming Model

For practical solution of the optimization problems Py, we wish to for-
mulate them as MILP models. We drop the resource constraints v € I/ from
problems Py, ..., P, to obtain Pj,..., P, because we wish to analyze the
MILP formulations of the SWF's without the complicating factor of resource
constraints. These constraints can later be added to the optimization models
before they are solved. In addition, problems Pj,..., P} contain innocuous
auxiliary constraints that make the problems MILP representable.

The MILP model for P| follows a different pattern than the models for
P}, ..., P, and we therefore treat the two cases separately. Problem P| can
be written

max z
z1 <nugy + (n—1)A —i—Z(um —ungy — AT (a)
=2

u; >0, all ¢ (b)

wi —u; < M, alli,j (c)
Constraints (c) ensure MILP representability, as explained in Hooker and
Williams (2012), because they imply that the hypograph of (9) is a finite
union of polyhedra having the same recession cone (Jeroslow 1987). The
constraints have no practical import for sufficiently large M, although for

theoretical purposes we assume only M > A.
The MILP model for P{ can be written as follows:

max 2j

A<(m-1DA+> v (a)

i=1 (10)
ui—Agvigui—Aéi, i:1,...,n (b)

w<y <w+ (M—-A), i=1,....,n (c)
u; > 0, (51-6{0,1},2':1,...,71

The following is proved in Hooker and Williams (2012).

14



Theorem 2. Model (10) is a correct formulation of P;.

When k > 2, the expression (7) for Fj(u) implies that problem P can
be written

max zp
2 < (n—k+ D)min{a;, + A ugy b+ > (4 — @, — AT (a)
i€y, (11)
;g > Uy, 1€ Iy (0)
up — iy, <M, i€l (c)

The constraints (11c) are included to ensure that the problem is MILP
representable. Since u;, is a constant, the hypograph is a union of bounded
polyhedra whose recession cones consist of the origin only and are therefore
identical.

The MILP model for P} when k =2,...,n is

max 2zj
zkg(n—k—l—l)(f#—Zvi (a)
1€ly,
0<v; < Mo, i€l (b)
vigui—ﬁil—A+M(1—5i), 1 €1} (C)
o<1 +A (d)
<
o<w | (e) (12)
w < u, t € Iy (f)
u <Sw+M(1—¢), i€ Iy (9)
Y e=1 (h)
i€ly,
w 2> Ui, _, (Z)
wp — Uy < M, i€ I (J)
(51',62' € {0, 1}, i € I
Theorem 3. Model (12) is a correct formulation of P| for k =2,...,n.

Proof. We first show that given any (u, z) that is feasible for (11), where
u;; = u;; for j = 1,...,k—1, there exist v, §, €, w, o for which (u, 2k, v, §, €,w, o)
is feasible for (12). Constraint (125) follows directly from (11c). To satisfy
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the remaining constraints in (12), we set

(0,0,0), if u; —u;;, <Aandi#k
0,1,0 fu—u;, <Aandi=&k .
(85, €6, 0:) = El:O:u)i’— gy, —A), if u; — a; >Aandi#k [’ e
(L1, uj —wiy, —A), ifu;—u;, >Aandi==r
W = U
o =min{u;, + A, u}
(13)

where £ is an arbitrarily chosen index in I} such that u, = ug,y. It is easily
checked that these assignments satisfy constraints (b)—(h). They satisfy (7)
because (11b) implies that u, > @;, _,. To show they satisfy (12a), we
note that (12a) is implied by (1la) because min{u;, + A,u.} < o and
(uj — u;; — A)T < w; for i € Ij. Since (11a) is satisfied by (u, 2), it follows
that (12a) is satisfied by (13).

For the converse, we show that for any (u, zi, v, d, €, w, o) that satisfies
(12), (u, 2x) satisfies (11). Constraint (116) follows from (12f) and (12i),
and (11c) is identical to (127). To verify that (1la) is satisfied, we let k
be the index for which ¢, = 1, which is unique due to (12g). It suffices to
show that (12a) implies (11a) when the remaining constraints of (12) are
satisfied. For this it suffices to show that

o < min{u;, + A, u.} (14)

vi < (up =, —A)T, i eIy (15)

(14) follows from (d), (e), and (f) of (12). (15) follows from (b) and (c) of
(12). This proves the theorem. O

6. Valid Inequalities

In this section, we identify some valid inequalities that can strengthen the
MILP model of P}, for k > 2. The MILP model (10) for Pj is already sharp,
meaning that the inequality constraints of the model describe the convex
hull of the feasible set, and there is therefore no benefit in adding valid
inequalities. The sharpness property may be lost when budget constraints
are added, but the resulting model may remain a relatively tight formulation.
When n < 3, the models P}, for k > 2 become sharp when the valid
inequalities described below are added. This is not true when n > 4, but
the valid inequalities nonetheless tighten the formulation.
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The sharpness of the MILP model (10) for P; is proved in Hooker and
Williams (2012). We present a simpler proof in Appendix 2.!

Theorem 4. The MILP model (10) is a sharp representation of Pj (9).

We now describe a class of valid inequalities that can be added to the
MILP model (12) of P; for k > 2 to tighten the formulation.

Theorem 5. The following inequalities are valid for Pj, for k > 2:

zr < Zul (16)

1€l
2z <(n—k+Du+p Z(uj—aikfl), i €I} (17)
JE\{i}
where
. M— A _ A Uiy — Ujp \ —1
”B_M—(aikfl—ail) _(1 M)<1 M ) (18)

Proof. 1t suffices to show that for any (w,zx,v,d,€,w) that satisfies (12),
where u;; = 4;, for j =1,...,k—1, the vector u satisfies (16) and (17).
Since we know from Theorem 3 that w is feasible in (11), it suffices to show
that (11) implies (16) and (17). To derive (16), we write (11a) as

2 < Z (min{ﬁil + A,’U,(m} + (uz — Uy — A)+) (19)
i€ly,
For any term ¢ in the summation, we consider two cases. If u; < u;, + A,
then ugy < 4, + A (because ugy < u;), and the term reduces to ugy. If
u; > ui;, + A, term i becomes

min{a;, + A, ugy t+ (v — w5, — A) = min{0, ugy — a4y — A} +u; < ug

In either case, term 7 is less than or equal to u;, and (16) follows.

To establish (17), it is enough to show that (17) is implied by (11) for
each 7 € Ij,. We consider the same two cases as before.

Case 1: u; — u;; < A, which implies Uy — Uiy < A. Since u satisfies
(11a), we have

zr < (n—Fk+ 1)u<k> + Z (uj —us —A) (20)

Je\{i}
Uj _ﬂil >A

!The proof in Hooker and Williams (2012) can be simplified by using only the
multipliers a; = % (ai -1+ %) for i = 1,...,n, because each a; > 1 — A/M. The
multipliers f;; in their proof are unnecessary.
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It suffices to show that this implies

zp < (n—k+ 1w +5< D (=) + Y (uy— ﬁik_l))v (21)

J€l\{i} Je\{i}
ujfﬂilgA Uj—Usq >A

because (21) is equivalent to the desired inequality (17). But (20) implies
(21) because u gy < u; by definition of w gy, uj — @;,_, > 0 for all j € Iy due
to (11b), and it can be shown that
ﬁ(uj - aikfl) > uj — Uy — A (22)
for any j € I. To show (22), we note that the definition of 8 implies the
following identity:
Uiy — Ujy_y + A= (1 - ﬁ)(M + Uy — aik—1)‘

Adding (1 — B)u;,_, to both sides, we obtain

WUip_y — 677’%-1 +A= (1 - 5)(M + ah) = (1 - /B)ujﬂ (23)

where the inequality holds because M + 4;, > u; due to (11c). We obtain
(22) by rearranging (23).

Case 2: u; — u;, > A. It again suffices to show that (11) implies (21).
Due to the case hypothesis, we have from (11a) that

2 < (n— k+ 1) min{ﬂl +A,u<k>} + (uz — Uiy — A) + Z(u] — Uy — A)+

JeI\{i}
Uj —’Eil >A

This can be written
ze<(n—k+Du;—(n—k+1) (uZ — min{u; + A, u<k>})

—f-(uz — Uiy — A) + Z(U] — Ui — A)+

JeL\{i}
Ujfﬂil >A

which can be written
zk<(n—k+1u;, —(n—k) (uZ — min{u; + A,u<k>})

— (711 + A — min{ﬂl + A, u<k>}> + Z(u] — Uy — A)+ (24)

JeI\{i}
u]'—ﬂil >A

The second term is nonpositive because u; > %1 + A by the case hypothesis,
and u; > uyy. The third term is clearly nonpositive. Thus (24) implies (21)
because uj — u;, , > 0 and (22) holds for j € I, as before. O
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7. Modeling Groups of Individuals

In many applications, utility is naturally allocated to groups rather than
individuals, where individuals within each group receive an equal allocation.
This occurs in the examples of Section &8, in which groups correspond to
classes of patients with the same disease/prognosis or to neighborhood pop-
ulations. In other applications, the number of individuals may be too large
for practical solution, since problem P; must be solved for each individual 7.
In such cases, individuals can typically be grouped into a few classes within
which the individual differences are small or irrelevant, thus making the
problem tractable and the results easier to digest. We therefore modify the
above SWFs to accommodate groups rather than individuals. The theorems
are proved in Appendix 2.

We suppose there are n groups of possibly different sizes. We let u; de-
note the utility of each individual in group ¢ and s; the number of individuals
in the group. Following Hooker and Williams, the SWF F} becomes

Gi(u) = (i 8 — 1>A - (Zn: si>u<1> + Zn: si(ui —uqy — AT (25)
i=1 1 i=1

Hooker and Williams prove the following.

Theorem 6. The problem P{, modified for groups, is equivalent to the MILP

model
max zi

n n
zlg(ZSZ-—l)A—i—Zsivi

=1 =1
ui—AS’Uiéui—A&‘, izl,...,n
w<y; <w+(M—A);, i=1,...,n
u; > 0, Ei,diE{O,l},i:L...,n

(26)

It is shown in Appendix 2 that for £ > 2, we can adapt Fj(u) to groups
as follows:

ék(’u,) = (Z 8<,L~>) min{u<1> + A, u<k>} + Z 5(3) (u<i> — U1y — A)+ (27)
i=k i=k

Theorem 7. The functions Gy(u) are continuous in wyy, ..., uy) for k =
1,...,n.
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The MILP model is very similar to the one we developed for (11):

max zj

2 < s; o+ siv; (a)

= () 3 (25)
(120)—(125) (b))

0;, € € {0, 1}, 1 € Iy,
Theorem 8. The problem P}, reformulated for groups, is equivalent to (28)
fork=2,...,n.

Hooker and Williams (2012) prove that (26) is a sharp representation of
Pll reformulated for groups. We present a simpler proof in Appendix 2.

Theorem 9. The MILP model (26) is a sharp representation of P| reformu-
lated for groups.

Finally, we describe a set of valid inequalities for the MILP model (28)
for k > 2.

Theorem 10. The following inequalities are valid for the group problem P
for k > 2:

2k < Z il (29)

i€l
2 < (ZSOUj-F,BZSj(Uj—ﬂZ‘kil), i€ I, (30)
JEI Je\{i}

where 3 is given by (18).

8. Applications

We now implement our approach on a healthcare resource allocation
problem and a disaster management problem. We solve all MILP instances
using Gurobi 8.1.1 on a desktop PC running Windows 10.

8.1. Healthcare Resource Allocation

A proper balance between fairness and efficiency is crucial in the alloca-
tion of healthcare resources. Hooker and Williams (2012) study a problem
in which treatments are made available to patients on the basis of their
disease and prognosis. In discussing this case, we caution that the results
we report should not be taken as general recommendations for the allocation
of medical resources. They are based on cost and clinical data specific to
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a particular set of circumstances. We use this example because it allows
comparison with the published H-W results on the same problem instance.

Patients are divided into groups based on their disease and prognosis.
There is one treatment potentially available to each patient group, and
for policy consistency, it is provided to either all or none of the group
members. Binary variable y; is 1 if group ¢ receives the recommended
treatment and 0 otherwise. The average utility u; experienced by members
of group ¢ is measured in terms of quality adjusted life years (QALYs);
¢; is the net gain in QALYs for a member of group i when receiving the
recommended treatment, and «; is the expected QALYs experienced with
medical management without the treatment. Thus

The budget constraint is

n
Z sicy; < B (32)
i

where s; is the group size, ¢; the cost of treating one patient in group ¢, and
B the total available budget. The budget is set so as to force some hard
decisions. The constraints (31)—(32), along with y; € {0,1} fori =1,...,n,
are added to the MILP models (26) and (28).

The H-W results are reproduced here in Table 1, in which the columns
indicate solutions values of y; for the 33 patient groups and various ranges
of A. The treatments are pacemaker implant, hip replacement, aortic
valve replacement, coronary artery bypass grafting (CABG), heart and kid-
ney transplant, and kidney dialysis. Three types pf CABG surgery are
distinguished (left main, double, and triple bypass), and kidney dialysis
patients are distinguished by years of life expectancy with dialysis. Most of
these categories are further divided into one, two, or three patient groups
representing the degree of severity of the disease. The last column indicates
the average number of QALYs per patient for each A range.

The results contain several interesting features, but most obvious is the
transfer of resources from heart bypass surgery to dialysis as A increases.
Kidney dialysis is quite costly, because the treatment is ongoing rather than
a one-time event such as surgery. The payoff in QALYs per unit cost is
therefore relatively low, and bypass surgery is selected when the utilitarian
objective dominates (smaller values of A). As A increases, resources are
transferred to dialysis patients, who are the worst off without treatment;
heart bypass patients tend to have a fairly long life expectancy without the
surgery. However, the less serious dialysis patients are treated first as A
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increases, the opposite of what one should expect. This will be corrected in
our leximax model.

Another problematic aspect of these results is that the average QALYs
per patient decrease relatively little as A increases, as can be seen in the
last column of Table 1. This is due to the fact that the H-W method does
not take into account the utility levels of patients in the fair region (i.e.,
within A of the lowest), except for the very lowest. This results in a large
space of alternate optimal solutions, many of them quite different from each
other. To deal with this indeterminacy, the H-W experiments break ties by
adding € ), s;u; to the objective function. This means that utilities in the
fair region (except the lowest) are treated in a utilitarian fashion. Thus as A
increases, the solution becomes basically utilitarian again, except that the
welfare of the very worst-off patient is maximized.

The results of our model appear in Table 2. The computation time for a
given A is negligible, almost always less than 0.5 second, even though there
are 33 groups. The solution is significantly different from that of the H-W
model. We note first that the average utility per patient drops considerably
as A increases, indicating that equity plays a larger role for A > 0 than
in the H-W solution. Kidney dialysis enters the solution for much smaller
values of A, and the more seriously ill kidney patients enter first, the reverse
of what occurs in the H-W solution. This reflects the fact that our solution
is sensitive to the utility levels of all disadvantaged patient groups rather
than only the very worst-off.

There are other differences with the H-W solution. Heart bypass surgery
remains in the solution for the most seriously ill patients, with some excep-
tions, through the entire range of A. This is again because the solution
is sensitive to their disadvantaged position even though they are not the
worst-off. Pacemakers now drop out of the solution for large A, even
though pacemaker implantation is relatively inexpensive. This is because
the pacemaker patients are better off without treatment than any of the
other patients and therefore cease to receive priority as equity becomes more
important. In general, these results indicate that incorporating leximax
rather than maximin fairness in a social welfare function yields solutions
that more adequately reflect equity considerations.

8.2. Shelter Location and Assignment

Disaster preparation and post-disaster response are important elements
of humanitarian operations, in which equity is an essential consideration.
We apply our approach to the shelter location and assignment problem
investigated in Mostajabdaveh et al. (2019). There are two sets of decisions:
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where to construct shelters in preparation for natural disasters, and how
to assign one shelter to each potentially affected residential area. Mosta-
jabdaveh et al. solve a model with multiple scenarios representing possible
demands and street disruptions, but we simplify the problem by removing
the stochastic element so as to clarify the equity /efficiency trade-off.

Utility is measured as negative cost, where cost is taken to be the travel
distance between a residential area and its assigned shelter. A conventional
efficiency objective is to minimize the average travel distance among all
individuals. Optimizing this objective alone forces people in some areas to
travel a long distance to their shelter, whereas equalizing convenience of
access results in much greater total distance traveled.

To formulate a MILP model of the problem, suppose m is the number
of candidate locations for shelter, and n is the number of population areas.
For j € {1,...,m}, ¢; is the shelter capacity, and e; is the cost of opening
a shelter at location j. For i € {1,...,n}, s; is the population of area i. We
suppose that each person living in area ¢ must travel a distance of D;; to
reach location j. Binary decision variable y; = 1 when a shelter is open at
location j, and binary variable X;; = 1 when all persons living in area i are
assigned to shelter j. The total cost of opening shelters must not exceed B.
The model of Mostajabdaveh et al. assumes that each shelter is large enough
for the entire population of any individual area, so that it is unnecessary to
split areas between shelters. The resulting constraints are

m
Y Xy=1,i=1,...,n
j=1

n

ZSiXijSijj, j:]_,...,m

i=1 (33)
m

D ey < B

j=1

Xijv ij{O,l}, 1=1,....,.n, 5=1,...,m

The utility u; of each person in area i is defined by the following constraints:
m

ui:—ZDinij, Z':l,...,n (34)
j=1

Constraints (33)—(34) are added to the MILP models (26) and (28). We
solve the problem with and without a tie breaking term in the objective
function; the resulting solutions are very similar.
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Figure 4: Runtime in shelter allocation example

We generate problem instances with one of the methods used by Mosta-
jabdaveh et al. Instances of the capacitated warehouse location problem
from Beasley (1988) are converted to shelter location instances by identifying
shelters with warehouses, residential areas with customers, and population
counts s; with customer demands. The distance D;; is taken to be Cj;/s;,
where Cj; is the cost of meeting all of customer ¢’s demand from warehouse j.
We use instances cp92 (25 locations) and c¢p122 (50 locations), both having
50 customers. The budget B is set to 150000 for cp92 and 300000 for cp122.

Fig. 4 shows that the run time is greater for intermediate values of A,
less than 10 seconds in most cases but never more than 18 seconds. The
resulting socially optimal solutions appear in Figs. 5 and 6. These plots show
the evolution of per capita utility in individual neighborhoods as A increases.
The shaded region indicates which utilities are in the fair region (within A
of the worst). We see immediately that the problem is highly constrained,
because the lowest utilities quickly reach a plateau and remain at a low level
even for large A values. These neighborhoods are located at a considerable
distance from candidate shelter locations, and so they remain disadvantaged
even when given high priority. In this type of situation, it is particularly
important to use a leximax rather than a maximin criterion of fairness, so
as to take into account the situation of disadvantaged neighborhoods other
than the very worst-off. If a maximin criterion were used, only the most
distant neighborhood would have a bearing on equity. Other neighborhoods
with utilities in the fair region would be treated arbitrarily or (if there is tie
breaking) so as to minimize total travel distance, the latter resulting in an
essentially utilitarian solution even for large A.

By contrast, the leximax component yields the desired result, because
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Figure 5: Utility distributions in shelter allocation instance CP92 (n = 50, m = 25)

several of the less advantaged neighborhoods improve their status as A
increases. At the same time, some of the more privileged neighborhoods
lose utility as they begin to sacrifice somewhat for the sake of the more
remote neighborhoods. Interestingly, the less advantaged neighborhoods
typically start to benefit from an increasing A shortly before they enter the
fair region. The reason for this is that when a low utility level enters the
fair region, it immediately becomes suboptimal due to the greater weight it
receives there. It is therefore pushed up to one of the discrete feasible levels
outside the fair region.

9. Conclusion

We propose a new systematic approach to balancing efficiency and equity
in an optimization model, in which utility serves as the efficiency measure
and Rawlsian leximax fairness as the equity measure. A parameter A
regulates the equity /efficienty trade-off by dividing the feasible utility range
into a fair region and a utilitarian region, where the fair region consists
of utilities within A of the utility of the worst-off party. Leximax fairness
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Figure 6: Utility distributions in shelter allocation instance CP122 (n = 50, m = 50)

is the dominating objective in the fair region, and utility dominates oth-
erwise. Thus a single parameter allows a decision maker to control the
balance between equity and efficiency by deciding which parties are suffi-
ciently disadvantaged—that is, sufficiently near the worst-off—to deserve
some degree of priority.

For a given optimization model, we combine equity and efficiency by
solving a sequence of optimization problems, each of which maximizes a SWF
subject to constraints from the original model. The SWFs are formulated
using mixed integer constraints. They successively give priority to the worst-
off, the second worst-off, and so on, with the degree of priority gradually
decreasing relative to utilities in the utilitarian region.

As proof of concept, we apply our method to health resource allocation
and disaster preparation problems. The solution time is at most a matter
of seconds for a given value of A. We find that the solutions are not only
sensitive to equity considerations but reveal complex and subtle trade-offs.
This suggests that the modeling approach developed here can potentially
serve as a useful mathematical tool for balancing fairness and efficiency in
real-world situations.
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Appendices

for “Combining Leximax Fairness and Efficiency in a Mathematical
Programming Model”
by Violet (Xinying) Chen and J. N. Hooker

Appendix 1

In this Appendix, we prove that Fj(u) satisfies the Chateauneuf-Moyes
condition for all k. While it is widely recognized condition that an equality
measure should satisfy the Pigou-Dalton condition, which requires that any
utility transfer from a better-off party to a worse-off party increases (or at
least does not decrease) social welfare, this is not obviously true of Fj(u),
since it is not an equality measure or even a fairness measure. In any
event, Chateauneuf and Moyes (2005) have defined a weaker form of the
Pigou-Dalton condition that all the functions Fj(u) satisfy. It is based on
transfers of utility from a better-off class to a worse-off class rather than
from one individual to another. Specifically, it examines the consequences
of transferring a given amount of utility from individuals whose utility
lies above any given threshold (taking an equal share from each) to those
whose utility lies below any given threshold (giving an equal share to each).
Arguably, only such transfers should be considered, because a removal of
utility from the upper range should remove at least as much from the best-
off individual as from other well-off individuals, and an endowment of utility
on the lower range should benefit the worst-off individual at least as much
as other badly-off individuals. The Chateauneuf-Moyes (C-M) condition
requires that such transfers result in at least as much social welfare.

To define the C-M condition formally, let us say that a C-M transfer
is a transfer of utility from w to u’ such that uy < --- < u, as well as
uy < --- <, and for some pair of integers ¢, h with 1 < ¢ < h < n, we

n’
have uy < up, and

A SWF F(u) satisfies the C-M condition if C-M transfers never decrease
social welfare. That is, for any u and any C-M transfer from u to o/,

F(u') > F(u) (A.1)

for sufficiently small € > 0.
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Figure A.1: Illustration of proof of Theorem 11.

Table A.1: Verifying the Chateauneuf-Moyes condition for Fi (u)

Case Gain Loss
t(u) n —t(u)
(a) 7 €>€ n—h—|—1€<€
(b) t(z)e > € €

Theorem 11. The Hooker-Williams social welfare function F(u) satisfies
the Chateauneuf-Moyes condition.

Proof. Tt suffices to show that (A.1) holds for any u and sufficiently small
€ > 0. There are three types of utility transfer, illustrated in Fig. A.1: (a)
¢ < h<t(u), (b) ¢ <t(u) < h,and (c) t(u) < ¢ < h. The resulting utility
gain by individuals 1,...¢, and loss by individuals A, ..., n, are indicated in
Table A.1. It is clear on inspection of Fig. A.1 that the gain is at least € in
each case, and the loss never more than e. The C-M condition is therefore
satisfied. O

Theorem 12. The social welfare functions Fj(u) satisfy the Chateauneuf-
Moyes condition for k =2,...,n.

Proof. 1t is clear that a sufficiently small utility-invariant transfer satisfies
the C-M condition when k& > ¢(u), because in this case Fj(u) is simply
utilitarian. We therefore need only consider the six cases illustrated in
Fig. A.3, in which k < ¢(u). It is convenient to write Fj(u) in the following
form:

k n
Fr(u) = t(wugy + > (n—i+ Dug + > (ug — A)
i=2 i—t(w)+1
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The resulting gain by individuals 1, ... ¢, and loss by individuals h, ..., n, are
indicated in Table A.3. In cases (b)—(f), it is clear on inspection of Fig. A.3
that the gain is more than € in each case, and the loss never more than e.
In case (a), we note first that the gain can be written

(=1 n—1t(u)
2 l

n —

To show that the loss is no greater than the gain, it suffices to show this
when h = £+ 1, since h > £ + 1 and the loss is nonincreasing with respect
to h. Thus it suffices to show

k

n—g_l—n_t(u) > ! < Z(n—i+1)+n—t(u)>

2 / n—1¥{ el

Since k < t(u) and each term of the summation is at most n — ¢, it suffices
to show

n_ﬂ—l_n—t(u) - (t(w) = O)(n—€) + n — t(u)

2 4 n—4¥

Rearranging, we obtain

1 1 41
This inequality is clearly satisfied when the following is false:
1 1
S ——2>1 A3
(" (A-3)

We therefore assume (A.3) is true. Since (A.2) is clearly satisfied when
¢ =1, we suppose £ > 2, in which case (A.3) implies n < £2/(¢£ —1). Since

¢ < h < n, we can state
2

{—1

or 2—1<n(f—1) < (2 Since n and ¢ are positive integers, this implies
n = ¢+ 1, in which case (A.2) reduces to

I+1<n<

(+1—tw) _(+1
14 -2
This holds because t(u) > ¢+ 1, and the theorem follows. O
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Figure A.3: Illustration of proof of Theorem 12.

Appendix 2

In this Appendix, we derive the group-related SWFs Ga(u), ..., Gp(u)
and prove the relevant theorems. We obtain the SWFs by treating the group
members as individuals and applying the the SWFs Fj(u) for individuals,
with the assumption that all individuals in a group have the same utility.

We begin by deriving G1(u). Let u}, be the utility of individual 7', and
let u; be the utility of each individual in group i. There are n’ individuals
and n groups. Let s; be the size of group i, so that

n

n = Z S (A4)

=1

Then

Fi(w)) = nfulyy + (0 = DA+ " (uf —ufyy — A)F
=1

Since u 1y = u’<1> and group ¢ has size s;, we have

n

n n

Gi(u) = (Z‘Si>u<1> + (Zsl — 1)A + Zsz(uZ — Uy — AT
i= i=1 i=1

This is the formula used in Hooker and Williams (2012).

Hooker and Williams prove that (10) is a sharp representation of Pll,
and (26) a sharp representation of Pll reformulated for groups. We present
a simpler proof of both theorems. It is necessary only to prove the latter,
because the former is a special case of it.
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Table A.3: Verifying the Chateauneuf-Moyes condition for Fj(u)

Case Gain Loss
1 ‘ 1 :
(a) z(t(u)JrZ(nfiJrl))e m(Z(n*i‘Fl)‘Fn*t(u))E
i=2 i=h
14
(b) z(t(u)+§(ni+l))62t(z)e>e ::7]:(1‘)16<e
k
(c) %(t(u) + ;(n —i+ 1))6 > t(Z)e > € :__;(_1:)15 <e€
1 £ t(u n—h+1
(d) 7(t(u)+§(nfz+l))ez (£)6>6 n_h116=6
1 b . t(u n—h+1
(© g(t<u>+§<n—z+1>)ez(/e>e e
k
(f) %(t(u)ﬁ—;(n—i—kl)—i—f—t(u))e26 Z:Ziieze

Proof of Theorems 4 and 9. We prove Theorem 9, of which Theorem 4
is a special case in which s; = 1 for each 7. It suffices to show that any
inequality z; < a’w + b that is valid for P| is a surrogate (nonnegative
linear combination) of inequalities in (26). Let

We first show that the following is a surrogate of (26) for any i:
A A
< _ ) P Sl P _ = b )
21 <(N-1)A+ (s,—i—(N SZ)M)UZ—F (1 M)Z?;s]u] (A.5)
j#i

We then show that 21 > a’u + b is a surrogate of the inequalities (A.5).
The theorem follows.

To show that (A.5) is a surrogate of (26), we first note that the following
is a linear combination of the upper bounds on v; in (26b) and (26¢), using
multipliers 1/A and 1/(M — A), respectively:

A A
<= — = )u,. .
vj < Mw+ (1 M)uj (A.6)
We also have the following from (26b) and (26¢):
v; < Uu;. (A7)
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w < ;. (A8)

We now obtain the following, for any given ¢ and j, as a linear combination
of (A.6) and (A.8), using multipliers 1 and A/M, respectively:

A A
vy < Mvi + <1 — M)uj (A9)
Finally, we obtain (A.5) for any given ¢ by summing (26a) with multiplier
1, (A.7) with multiplier

A
S; + (N — SZ)M

and (A.9) over all j # ¢ with multiplier s;.

It remains to show that z; < a’u + b is a surrogate of (A.5) for
i =1,...,n. We first observe that (u,z) = (0,(N — 1)A) is feasible in
Pll and must therefore satisfy 21 < a’u + b, which implies b > (N —
1)A. We can assume without loss of generality that b = (N — 1)A, since
otherwise we can add an appropriate multiple of the valid inequality 0 < b
to obtain the desired inequality z; < a’w + b. We also note that (u,z) =
(M,...,M,NM+(N—1)A) is feasible and must satisfy z; < a’u+(N—1)A,
which means

» a; =N (A.10)
j=1

Finally, we note that (u, z) = (Me;, (N —1)A+s;(M —A)) is feasible for P|,
where e; is the ith unit vector. Substituting this into z; < a’u+ (N —1)A,
we obtain

a; > (1 - %)si (A.11)

Due to (A.10), we can suppose without loss of generality that 7, a; = N,
since otherwise we can add appropriate multiples of the valid inequalities
0 < a; to obtain z; < aTu+0.

To obtain z < a’u + b as a surrogate of (A.5), we sum (A.5) over all j
using the multipliers

M A
= 2 (g (1- 7) Z) 1
va (o= (1-5)s (A.12)
for each 4. It is easily checked that Y ;" a; = 1, so that the linear combi-

nation has the form
z<d'u+ (N -1)A (A.13)
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We wish to show that d = a. Note that
A A
d; = (Si + NM>QZ + (1 — M)S@ZOZ]'
JFi
Using the fact that 3 7" | a;j = 1, this becomes

d; :N%ai—i— (1— %)sZ

which immediately reduces to d; = a;. We conclude that (A.13) is a linear
combination of the inequalities (A.5) using multipliers «;. It remains to
show that each «; is nonnegative, but this follows from (A.11) and (A.12).
O

We now derive G, (u) for k > 2. Recall that the SWF for individuals is

771/

Fp(u)= 0 —K+1) min{u'<1> + A, u’<k,>} + Z(u'@-q - ﬂ'm —A)t (A.14)

i'=k!

To obtain G (u), we again assume the individuals in each group i have the
same utility u;. The first individual in (A.14) that belongs to group k is
individual

k—1
=1+ s (A.15)
7=1

Due to (A.4) and (A.15), the first term on the RHS of (A.14) is

k—1 n
<n’ —1— Zsij + 1) min{ugy + A, upy} = <Z s<i>) min{u gy + A, wy
j=1 i=k

since all the utilities in a group are the same. Thus we have

n

Gk(u) = (Z 5<i)> min{u<1> + A, u<k>} + Z S (i) (u<i> — Uy — A)Jr (A.16)
i=k i=k

We show as follows that Gj(u) is continuous in Ulgys -+ - 5 Uiy

Proof of Theorem 7. It suffices to show each term of (A.16) is a contin-
uous function of wy, ..., Uy, With uy, ..., ug_1y and the corresponding
group sizes S(yy,...,S—1) fixed. The first term is continuous because it
is equal to a constant time the maximum of order statistics w;y and wpy,
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which are continuous functions of w. Similarly, each term of the summation
is a constant times the maximum of a continuous expression and zero. [

We can now establish that the MILP model (28) is correct.

Proof of Theorem 8. We first show that given any (u, zx) that is feasible
for (11), where u;, = u;; for j = 1,...,k—1, there exist v, d, €, w, o for which
(u, 2z, v, 0, €, w,0) is feasible for (28). Constraint (28;) follows directly from
(11c¢). To satisfy the remaining constraints in (28), we assign values to
v,0,€,w,0 as in (13), where & is an arbitrarily chosen index in I} such that
ug = ugy. It is easily checked that these assignments satisfy constraints
(28b)—(28h). They satisfy (28i) because (11b) implies that u, > @;,_,. To
show they satisfy (28a), we note that (28a) is implied by (11a) because
min{@;, + A, us}t < o and (u; — 4, — A)T < v; for i € I. Since (11a) is
satisfied by (u, z), it follows that (28a) is satisfied by (13).

For the converse, we show that for any (u, 2, v, d, €, w, o) that satisfies
(28), (u, 2x) satisfies (11). Constraint (116) follows from (12f) and (12i),
and (11c) is identical to (287). To verify that (1la) is satisfied, we let k
be the index for which €, = 1, which is unique due to (28g). It suffices to
show that (28a) implies (11a) when the remaining constraints of (28) are
satisfied. For this it suffices to show that

o <min{u;, + A, ux} (A.17)

v; < (u, — Uy — A)Jr, 1€ Iy, (A18)

(A.17) follows from (d), (e), and (f) of (28). (A.18) follows from (b) and (c)
of (28). This proves the theorem. [J

Finally, we show that (29)—(30) are valid inequalities for the group
version of P for k > 2, which is

max zj
2 < (Z si) min{u;, + A, ug } + Z si(u; — agy, — AT (a)

= = (A.19)
i > Ui,y 1 E Iy (b)
u; — Uy, <M, 1€l (C)

Proof of Theorem 10. It suffices to show that for any (u, zx, v, d, €, w)
that satisfies (28), where u;; = @;; for j = 1,...,k — 1, the vector u satisfies
(16) and (17). Since we know from Theorem 8 that w is feasible in (A.19), it
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suffices to show that (A.19) implies (29) and (30). To derive (29), we write
(A.19a) as

a<y si<min{ﬂ¢1 + A gy} (g — g, — A)+) (A.20)
i€l
For any term ¢ in the summation, we consider two cases. If u; < u;, + A,
then upy < u;; + A (because Uy < u;), and the term reduces to Sitgy. 1f
u; > Ui, + A, term i becomes

si(min{ﬂil—l—A,u<k>}+(ui—ﬂil—A)> = si(min{O,u<k>—fLi1—A}+ui) < siu4

In either case, term i is less than or equal to u;, and (29) follows.

To establish (30), it is enough to show that (30) is implied by (A.19) for
each i € I,. We consider the same two cases as before.

Case 1: u; — u;; < A, which implies Uy — Uiy < A. Since u satisfies
(A.19a), we have

2 < ( Z sj)u<k> + Z §j (uj — a5y — A) (A.21)

It suffices to show that this implies

2L < ( Z sj>ui + ﬂ( Z si(uj —ag, o) + Z sj(u; — ﬂik_1)>, (A.22)

JEI, Jel\{i} JjeL\{i}
Uj—Ujy <A Uj—Ujq >A

because (A.22) is equivalent to the desired inequality (30). But (A.21)
implies (A.22) because u,y < w; by definition of wy, u; — ;,_, > 0 for
all j € Iy, due to (A.190), and (A.3) for all j € I.

Case 2: u; — u;, > A. It again suffices to show that (A.19) implies
(A.22). Due to the case hypothesis, we have from (A.19a) that

2 < ( Z Sj) min{ﬂl + A,u<k>} + si(ui — Uy — A) + Z Sj(u]' — Uy — A)

JEl}, ]E[k\{l}
u]-—ﬂil >A

This can be written

2z < ( Z sj)ui — ( Z Sj) (U,L —min{a; + A, u<k>}>
JEly JEly
+ si(ui — U — A) + Z sj(uj — Uy — A)
J€L\{i}

’u,jfﬂil >A
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which can be written

2z < ( Z 3j)ui — (23]‘) (Uz — min{u; + A, u(k>})

jel PANG
— 8 (ﬂl + A — min{ﬂl + A, u<k>}> + Z Sj(uj — U, — A) (A23)
Je\{i}
Ujfﬁil >A

The second term is nonpositive because u; > %1 + A by the case hypothesis,
and u; > wuy. The third term is clearly nonpositive. Thus (A.23) implies
(A.22) because u; — 4;, , > 0 and (22) holds for j € I}, as before. O
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